ABOUT US

Self-healing concrete, repair mortars and grouts as key enabling technologies

The scientific objectives are attained by joint PhD research and envisage:

(i) To develop and model innovative self-healing strategies for bulk and local application, including optimization of mix designs and development of multi-functional self-healing agents with attention to cost, applicability and environmental impact.

(ii) To scientifically substantiate and model the durability of self-healed concrete and repaired systems for an accurate service life prediction and to integrate self-healing into innovative service-life based structural design approaches to foster the market penetration through an innovative life-cycle thinking.

(iii) To quantify and prove the eco-efficiency of newly developed smart concrete / mortars by life cycle assessment modeling.

The planned activities within the ETN are represented in the work package structure. Training is given to the early stage researchers by their individual PhD projects which all fit within the scientific work packages 1-4, dealing with improved self-healing concrete (WP1), advanced local (self-)repair (WP2), durability, service life and sustainability (WP3) and technology transfer and entrepreneurship (WP4).

 

Self-Healing - Multifunctional - Advanced Repair Technologies in Cementitious Systems

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.